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1. Introduction

Domain wall (DW) solutions of supergravity have received a lot of attention recently which

is largely due to their role in the AdS/CFT correspondence [1]. However, apart from this

application they also have been studied as a class of supersymmetric ground states alter-

native to the commonly considered Minkowski or AdS backgrounds. In particular super-

gravities with non-trivial background fluxes often do not admit a stable, four-dimensional

supersymmetric ground state but they do have BPS DW solutions. For example, in type

IIB supergravity compactified on Calabi-Yau threefolds with non-trivial three-form fluxes

it is necessary to include D-branes and orientifold planes in order to cancel the tadpoles

induced by the fluxes and to obtain an N = 1 supersymmetric Minkowski background [2].

On the other hand without orientifold planes no four-dimensional Minkowski background

is allowed. However, in this case three-dimensional N = 1 DW solutions do exist [3, 4].

In this paper we continue the study of such DW solutions of type IIB and generalize

the previous results [3, 4] in various respects. More specifically we start from type IIB

supergravity compactified on Calabi-Yau threefolds with electric and magnetic background

three-form flux for both the NS three-form H3 and the RR three-form F3 [5]–[10]. In the

presence of the magnetic fluxes the four dimensional antisymmetric tensors fields Bµν and

Cµν become massive [10]. For this case the corresponding supergravity has only recently
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been constructed in refs. [11]–[14]. Using these four-dimensional N = 2 supergravities

we study their N = 1 DW solutions including non-trivial magnetic fluxes. We find that

the resulting DW necessarily is flat and furthermore that the background profile of the

scalar fields is governed by a set of gradient flow equations expressed in terms of a single

superpotential W , which is related to the superpotential suggested in [6].

The DW solutions of type IIB have their mirror analogous in type IIA. Without fluxes

mirror symmetry identifies type IIB compactifications on a Calabi-Yau manifold Ỹ with

type IIA compactified on the mirror Calabi-Yau Y [15]. In the presence of RR fluxes mirror

symmetry is straightforwardly extended by also exchanging the respective flux parame-

ters [6, 10]. For NS fluxes the situation is slightly more involved in that mirror symmetry

can relate Calabi-Yau compactification with fluxes to purely geometrical compactification

on a manifold Ŷ without flux [16]–[19] or possible also to non-geometrical backgrounds [20].

For the case of geometrical backgrounds Ŷ is no longer a Calabi-Yau manifold but rather

a manifold with SU(3) structure or more generally with SU(3)× SU(3)-structure [21]–[30].

In such compactifications the (intrinsic) torsion of Ŷ plays the ‘mirror-role’ of the fluxes.

This generalized mirror symmetry is also reflected in the DW solutions. For electric

fluxes it was shown in [4] that the mirror symmetric DW can be interpreted as a solution

of type IIA supergravity in a warped background M1,2 ×w X7. As a consequence of the

N = 1 supersymmetry of the DW X7 has G2 holonomy and furthermore consists of a

six-dimensional manifold Ŷ fibered over the real line. The G2 holonomy constrains Ŷ to

be within a special class of manifolds with SU(3) structure termed ‘half-flat’ [21, 22]. From

a mathematically point of view such fibration were studied in [21] and the DW solution

precisely corresponds to the Hitchin flow equations.

For magnetic fluxes mirror symmetry is more involved. In [29, 31] it is shown that in

this case Ŷ has to be within a special class of manifolds with SU(3) × SU(3) structure. In

this paper we generalize the analysis of ref. [4] and show that the mirror symmetric DW

solution of type IIB with magnetic NS-flux also is of the form M1,2 ×w X7. However, in

this case Ŷ has to be a manifold with SU(3) × SU(3) structure which satisfies a set of

generalized Hitchin flow equations given in ref. [28]. X7 in turn has an integrable G2 ×G2

structure and is Ricci-flat as demanded by string theory.

This paper is organized as follows. In section 2 we set the stage for our analysis and

recall the N = 2 supergravity arising as the low energy limit of type IIB string theory

compactified on Calabi-Yau threefolds with background flux. In section 3.1 we study the

N = 1 DW solutions and show that the scalar fields vary according to gradient flow

equations. In section 3.2 we explicitly solve these equations and rewrite the solution in

terms of mirror symmetric type IIA variables. This sets the stage for section 4 where

we show that the DW solutions correspond to generalized Hitchin flow equations of a

geometrical SU(3) × SU(3) background. Further details are found in two appendices.

2. N = 2 Supergravity with Abelian electric and magnetic charges

In order to set the stage for the discussion of the DW solutions let us briefly recall the struc-

ture of N = 2 supergravity with massive tensor multiplets as it arises from type IIB string
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theory compactified on Calabi-Yau threefolds with both electric and magnetic three-form

fluxes. The N = 2 supergravity including massive tensor multiplets has been constructed

in references [11 – 14] where further details can be found. Here (and in appendix A) we

only summarize the results needed in the following.

An N = 2 tensor multiplet contains nT ≤ 3 antisymmetric tensor, 4 − nT real scalars

and two Weyl fermions as its components. If the tensors are massless they can be dualized

into scalars and hence a massless tensor multiplet is dual to a hypermultiplet which contains

four real scalars and two Weyl fermions [32, 33]. In this dual formulation the remnant of the

tensors are translational isometries acting on the dual scalars. In the standard (ungauged)

N = 2 supergravity [34] one dualizes all tensor multiplet such that the theory contains

only one gravitational multiplet, vector multiplets and hypermultiplets.

On the other hand a massive tensor is dual to a massive vector and it is often more

convenient to keep the tensor multiplet in the spectrum. Such a theory can be viewed as

a N = 2 supergravity with tensor multiplets which is deformed by Abelian electric and

magnetic charges [11 – 13]. These charges are not related to any gauging of isometries on

the residual scalar manifold. Instead the electric charges appear in Green–Schwarz type

interaction of the tensors with the gauge fields while the magnetic charge appear in the

Stückelberg mass terms of the tensors.

In this paper we do not discuss the general case [13] but instead focus on type IIB

theories compactified on Calabi-Yau threefolds Ỹ in the presence of electric and magnetic

three-form fluxes [12, 9, 10]. In this case the spectrum features a gravitational multiplet

(gµν , ψAµ, ψA
µ , A0

µ) (2.1)

where gµν is the metric, ψAµ, A = 1, 2 are the two chiral gravitinos while A0
µ is the gravipho-

ton. In addition there are nV = h(1,2) vector multiplets

(Ai
µ, λiA, λi

A, ti) , i = 1, . . . , nV , (2.2)

where Ai
µ are the gauge bosons, λiA are the doublets of chiral gaugini while ti are complex

scalars.1 Finally there are nH = h(1,1) hypermultiplets and one double tensor multiplet.

Since they couple non-trivially it is convenient to combine them as

(ζα, ζα, qu, BIµν) , α = 1, . . . , 2nH + 2 , (2.3)

u = 1, . . . , 4nH + 2, I = 1, 2 .

Each of these multiplets features two chiral hyperinos which we collectively denote as ζα.

The bosonic components of the hypermultiplets are 4nH real scalars, while the double

tensor multiplet contains two antisymmetric tensors BIµν (they are the four-dimensional

part of the RR and the NSNS two–forms) together with the axion l and the four dimensional

1Here h(1,1) and h(1,2) are the Hodge numbers of the Calabi-Yau manifold Ỹ . Throughout the paper we

denote by ti the scalars of the vector multiplets irrespective of their geometric origin. In type IIB compact-

ification they correspond to deformations of the complex structure while in type IIA compactification they

parameterize the Kähler deformation (cf. appendix A).
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dilaton ϕ. We denote the scalars in the hypermultiplets and in the double tensor multiplet

collectively by qu.

The background fluxes arise from expanding both the RR three-form F3 and the NS

three-form H3 along the third cohomology H3 of the Calabi-Yau manifold

F3 + τH3 = mΛαΛ − eΛβΛ , Λ = 0, . . . , h(1,2) , (2.4)

where

eΛ = e1
Λ + τe2

Λ , mΛ = mΛ1 + τmΛ2 , (2.5)

are the electric and magnetic background fluxes2 and τ is the ten-dimensional complex

type IIB dilaton τ = l + ie−φ. The three-forms (αΛ, βΛ) denote a real, symplectic basis of

H3.

In the next section we will search for N = 1 DW solutions of the effective supergravity

arising from type IIB compactifications. For this task we need the scalar part of the

supersymmetry transformation of the fermions which can be non–trivial along the DW. In

particular, in the following we set to zero the field strengths of the vectors and the tensors.

With this assumption the supersymmetry transformation of the two gravitinos ψµA has

the form [11 – 13]

δψµA = DµεA + iSABγµεB , (2.6)

where εA are the two supersymmetry parameters and SAB is a hermitian SU(2) matrix

which depends on the background fluxes (2.5). For the type IIB compactifications under

consideration one finds [12]

SAB =
i

2
σx

AB ωx
I 〈V,KI〉 , I = 1, 2 , (2.7)

where the quaternionic connection ωx
I is given by [35]

ωx
1 = δx3e2ϕ , ω1

2 = −e2ϕImτ , ω2
2 = 0 , ω3

2 = e2ϕReτ . (2.8)

Here e2ϕ = 1
8e−KH e2φ is the four-dimensional real dilaton, φ is the ten-dimensional IIB

dilaton and 1
8e−KH is the volume of Ỹ which is defined in (A.21). We also assembled the

background fluxes into (symplectic) vectors KI = (mIΛ, eI
Λ) and defined the symplectic

inner product 〈 , 〉 as:

〈V,KI〉 = (LΛeI
Λ − MΛmΛI) , (2.9)

where V = (LΛ,MΛ) is defined in (A.2). The electric and magnetic charges are not

arbitrary, as supersymmetry in four dimensions [12] and the tadpole cancellation condition

in ten dimensions [6], impose

〈K1,K2〉 = 0 . (2.10)

2The nomenclature electric–magnetic is linked to the definition of the electric versus magnetic gauge

bosons which arise in the expansion of the type IIB four form C4 according to C4 = AΛ
1 αΛ−Ã1 ΛβΛ+. . .. Here

AΛ
1 are the (h(1,2) + 1) electric gauge bosons (including the graviphoton) while Ã1Λ are the corresponding

dual magnetic gauge bosons.
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Inserting (2.8) into (2.7) SAB reads explicitly

SAB =
i

2
e2ϕ

[

σ3
AB (〈V,K1〉 + 〈V,K2〉Reτ) − 〈V,K2〉 Imτ σ1

AB

]

. (2.11)

The supersymmetry transformations of the gaugini are given by

δλiA = i∂µtiγµεA + W iABεB , (2.12)

where

W iAB = igi̄σAB
x ωx

I 〈U,KI〉 (2.13)

= igi̄e2ϕ
[

σAB
3 (〈U̄,K1〉 + 〈U̄,K2〉Reτ) − 〈U̄,K2〉Imτ σAB

1

]

,

and we defined Ui = ∇iV ≡ (∂i +
1
2∂iKV )V where KV is the Kähler potential of the vector

multiplets defined in (A.1).

Finally the supersymmetry transformations of the hyperinos read

δζα = iPuAα∂µquγµεA + NA
α εA , (2.14)

where

Nα
A = −2Uα

AI〈V,KI 〉 . (2.15)

The matrixes PuAα play the rôle of a vielbein on the scalar manifold spanned by the qu’s,

while Uα
AI are remnants of the vielbein on the quaternionic manifold along the directions

which have been dualized into scalars (see appendix A and in particular reference [11] for

more details).

3. N = 1 domain wall solutions

3.1 Gradient Flow Equations

After this brief review of the N = 2 low energy supergravity arising in Calabi-Yau com-

pactifications of type IIB string theory let us now turn to the main topic of this paper

and study its three-dimensional N = 1 DW solutions. That is we study solutions of the

four-dimensional N = 2 supergravity which preserve the three-dimensional Lorentz group

SO(1, 2) and half of the supercharges. We split the coordinates xµ, µ = 0, . . . , 3 of the

four-dimensional space-time into coordinates (xm, z),m = 0, 1, 2, where xm denote the co-

ordinates along the DW while z parameterizes the direction normal to the DW. Accordingly

we split the background metric preserving Lorentz invariance as

gµν(xµ) dxµdxν = eU(z)ĝmn(xm) dxmdxn + gzz(z) dzdz . (3.1)

where ĝmn(xm) is the metric of a three-dimensional space-time which we assume to have

constant curvature. (In the following the ‘hatted’ quantities will refer to the three-dimen-

sional un-warped metric.) Furthermore, following [3, 4] we choose to parameterize gzz(z) =
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−e−2pU(z) where p is an arbitrary real number. Finally using µ = eU(z) instead of z as the

coordinate of the transverse space we arrive at

gµν(xµ)dxµdxν = µ2ĝmn(xm)dxmdxn − dµdµ

µ2W2(z)
= ηαβeα

µeβ
νdxµdxν , (3.2)

where

W = ±epU(z)U ′(z) . (3.3)

The non–vanishing components of the vierbein defined in (3.2) take the form

ea
m = êa

meU(z) , e3
z = e−pU(z)δ3

z , a = 0, 1, 2 , (3.4)

while the non-vanishing components of the spin connection ω are found to be

ωab
m = ω̂ab

m , ωa3
m = e(p+1)U(z) U ′(z)êa

m . (3.5)

Since we are interested in DW solutions which preserve four supercharges we first

study the supersymmetry transformations of the fermionic fields. More precisely we solve

δεfermions = 0 for half of the supercharges. This is most easily done by imposing from

the very beginning a relation on the two supersymmetry parameters εA, A = 1, 2 which

reads [3, 4]

εA = hAABγ3ε
B . (3.6)

Here h(z) is a complex function while AAB is a constant matrix. Consistency of (3.6) with

its hermitian conjugate implies hh = 1 while A B
A ≡ AAC εCB must be a hermitian matrix

which in addition satisfies

A B
A A C

B = δC
A . (3.7)

Thus A has to be a suitable linear combination of (
�
, ~σ) where ~σ are the Pauli matrices.

Finally, the condition of constant curvature of ĝmn(xm) can also be expressed as the

integrability condition of [3, 36]

D̂m(h
1
2 εA) =

i

`
êa
mγaγ3h

1
2 εA (3.8)

where 1
`2

is the three dimensional cosmological constant.

The next step is to look for solutions of

δψµA = δλiA = δζα = 0 (3.9)

with (3.6) imposed. Furthermore, we only allow the scalar fields to be non-trivial in the

DW background setting all other fields to zero. Since we are most interested in the values

of the scalars transverse to the DW we suppose in the following that they only depend on

the coordinate z and ignore their xm dependence.

Let us first consider δψAm = 0. Using (3.4)–(3.8) one derives

AABDmεB = −
(

i

`
e−U +

1

2
e(p+1)UU ′

)

hγmεA . (3.10)
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Inserted into δψAm = 0 one obtains

(

i

`
e−U +

1

2
e(p+1)UU ′

)

hγmεA = iAABSBCγmεC . (3.11)

This implies that AABSBC is proportional to the identity or in other words

iAABSBC =
1

2
WδA

C , (3.12)

where the proportionality factor defines the superpotential W . From (2.11) and (3.12) we

infer the structure of A B
A to be

A B
A =

1√
2
(−σ1 B

A + σ3 B
A ) , (3.13)

and the constraint

(Imτ − Reτ)〈V,K2〉 = 〈V,K1〉 . (3.14)

Inserting (3.12) - (3.14) into (3.11) we finally arrive at

i

`
=

1

4
eU (hW − h̄W̄ ) , (3.15)

U ′=
1

2
e−pU (hW + h̄W̄ ) , (3.16)

W=4eϕeKH/2〈V,K2〉 . (3.17)

We see that the cosmological constant is determined by the imaginary part of hW while

the derivative of the warp factor is determined by the real part. W itself is determined by

the fluxes.

Before continuing let us briefly discuss the limiting cases of only RR fluxes (K2 = 0)

and only NS fluxes (K1 = 0). In the first case we see from (2.11) and (3.12) that A is

proportional to σ3 and no consistency condition needs to be imposed. For only NS fluxes

the consistency condition is

Imτ − Reτ = 0 . (3.18)

Now we look at to the solution of δψAz = 0. It turns out that we can follow precisely

the same steps as done in [3] with the only difference that we have to use the constraint

(3.14). Suppressing the intermediate steps we arrive at

hDzh =
2i

`
e−(p+1)U . (3.19)

The solution of δλiA = 0 proceeds analogously. We insert (3.6) and (2.13) into (2.12)

and obtain the constraint

(Imτ − Reτ)〈Ui,K2〉 = 〈Ui,K1〉 . (3.20)

Differentiating (3.14) with respect to z and using (3.20) we conclude

Imτ − Reτ = α , (3.21)
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where α is a real constant (α = 0 holds if and only if there are no RR fluxes). For our

purposes we do not need to find an explicit solution for the constraints (3.14), (3.20).

Note that they are satisfied, for instance, if the two vectors of electric/magnetic charges

are parallel K1 = αK2 where α is defined in equation (3.21). This is consistent with the

tadpole cancellation condition (2.10) and with the two limiting cases K1 = 0 or K2 = 0.

Inserting (3.20) into (2.12) we obtain the flow equations for the scalars ti

∂zt
i = −gi̄e−pU(z)h∇̄W . (3.22)

The analysis of δζα = 0 proceeds analogously and one inserts (2.15) and (3.6) into

(2.14). Using the quaternionic relations (A.13)–(A.16) one finds

∂zq
u = −guve−pU(z)h∂vW , (3.23)

where guv is defined in (A.8). In addition one finds that hW has to be real or in other

words h̄ is determined as the phase of W .

h̄ =
W

|W | . (3.24)

This in turn implies that the cosmological constant on the DW must be zero, as we can

see from equation (3.15). Therefore the metric ĝmn on the DW is flat:

ds2 = µ2ηmndxmdxn − dµdµ

µ2W2
. (3.25)

Note that (3.25) holds for K1 = 0 and in particular also for K2 = 0, that is in the case

where just RR fluxes are present [4].

Using (3.24) we can insert (3.16) into (3.3) to arrive at

W(z) = ±hW = ±|W | . (3.26)

Using as a transverse coordinate µ(z) = eU(z), (3.22) and (3.23) can be written as

gradient flow equations

µ
dti

dµ
= −gi∇ ln W , (3.27)

µ
dqu

dµ
= −guv∂v ln W . (3.28)

3.2 Solutions of the flow equations

So far we derived the gradient flow equations for an N = 1 BPS domain wall in type

IIB supergravity compactified on a Calabi-Yau manifold Ỹ in the presence of electric and

magnetic RR and NS fluxes. The purpose of this section is to study their solutions and

to prepare for a geometrical interpretation in a mirror symmetric compactification of type

IIA on some generalized manifold Ŷ .

We will not consider the most generic solution but instead follow [4] and restrict the

space of scalar fields which can vary along the DW. More precisely the scalars in the vector

– 8 –
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multiplets ti and the four-dimensional dilaton ϕ can be non-trivial along the DW. As we

discuss in appendix A, half of the scalars in the hypermultiplets are geometrical moduli of

the Calabi-Yau manifold. In type IIB compactifications they correspond to deformations

of the Kähler form and we denote them by za = σa + iλa. Following [4] we only allow the

λa to be non-trivial in the DW solution while σa together with the remaining scalar fields

from the RR sector are kept constant.

Let us first focus on the flow equations for the hypermultiplet scalars. Inserting (3.17)

and (3.24) into (3.16) and (3.23) we arrive at

∂zq
u = −2e−pU+ϕ+

KH
2 guv∂v(2ϕ + KH)|〈V,K2〉| , (3.29)

∂zU(z) = 4e−pU+ϕ+
KH
2 |〈V,K2〉| , (3.30)

where KH is defined in (A.20) and (A.21). Comparing (3.30) and (3.29) one obtains

dqu

dU
= −1

2
guv∂v(2ϕ + KH) . (3.31)

This equation shows that the U–dependence of the quaternionic fields is not modified by

the magnetic fluxes and thus we expect that the solution coincides with the solution derived

in [4].

In order to solve equation (3.31) let us first note that on the submanifold spanned by

the scalars ϕ and λa the inverse metric guv is block diagonal with the components

gϕϕ = 1 , gab = −2

3

(

d dab − 3λaλb
)

, (3.32)

where we have evaluated gab in the large volume limit and defined

d = dabcλ
aλbλc , da = dabcλ

bλc , dab = dabcλ
c , (3.33)

with dab being the inverse of dab. Inserting (3.32) into (3.31) we obtain the solution

eϕ = C e−U(z) , za = iλa = iDa e2U(z) , (3.34)

where C and Da are integration constants. From (A.21) we learn

e−KH =
4

3
De6U(z) , (3.35)

where we abbreviated D = dabcD
aDbDc. Note that as expected (3.34) and (3.35) coincide

with the result of reference [4].

Let us now consider the vector multiplets scalars. Also in this case it is more convenient

to consider (3.22) instead of (3.27) which, following [3], we rewrite as follows

∂z

(

Y Λ − Y
Λ

FΛ −FΛ

)

= −i4e(1−p)U+ϕ+
KH
2

(

mΛ

eΛ

)

(3.36)

where we have suppressed the label “2” on the NSNS fluxes and defined

V ≡ h eU(z)V = h eU(z)

(

LΛ

MΛ

)

≡
(

Y Λ

FΛ

)

. (3.37)
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Using the solution (3.35), choosing D = 12C2 and performing the change of coordinates

defined by

e(p+3)U(z)∂z = ∂w (3.38)

equation (3.36) becomes

∂w

(

Y Λ − Y
Λ

FΛ −FΛ

)

= −i

(

mΛ

eΛ

)

. (3.39)

If we set p = −3 and mΛ = 0 we recover the result of [4].

In order to derive further useful relations, let us display (3.39) more explicitly. Using

(A.4) and the normalization Y 0 = − i
2 we infer

bi = −2ImY i , vi = 2ReY i , (3.40)

where we split Λ = 0, i. Inserted into (3.39) using (A.3) we arrive at

0 = m0 (3.41)

∂wbi = mi (3.42)

1

2
cijk∂w(vjvk) − 1

2
cijk∂w(bjbk) = ei (3.43)

−1

2
cijk∂w(bivjvk) +

1

6
cijk∂w(bibjbk) = e0 (3.44)

Solutions of equations (3.42)–(3.44) are discussed in appendix B.

Note that equations (3.15) and (3.16) can be rewritten in terms of the rescaled section V

〈ReV,K2〉 = e(p+2)U∂wU , 〈ImV,K2〉 = 0 . (3.45)

Using (3.40), (B.2), (B.5) and (B.6) one can easily check the second equation in (3.45) and

compute the first to be

e(p+2)U∂wU =
1

2
(viei + cijkv

ibjmk) . (3.46)

Multiplying (3.43) by vi and making use of (3.42) one can derive by comparison with (3.46)

e−KV ≡ 4

3
cijkv

ivjvk = 4e2U , (3.47)

where we also used (A.5). Note that the final form of KV does not depend on the presence

of the magnetic fluxes and therefore coincides with the results of [4]. Let us also observe

at this point that the ten-dimensional type IIA dilaton φA defined by e2φA = 1
8e2ϕ−KV is

given by the integration constant introduced in (3.34) eφA = C, as can be seen from (3.34)

and (3.47). This will be important in the next section.

We are now in the position to formulate the DW gradient flow equations in a very

compact way, in terms of the quantities (ZA, WA) and (XΛ, FΛ) introduced in appendix A.

First notice that the relation between (XΛ, FΛ) and the sections (Y Λ, FΛ) can be deduced

from equations (A.2), (3.37) and (3.47). In particular, setting the irrelevant overall phase

to zero, that is h = 1, we obtain
(

XΛ

FΛ

)

= 2

(

Y Λ

FΛ

)

, (3.48)

– 10 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
8

and as a consequence (3.39) now reads

∂w

(

ImXΛ

ImFΛ

)

= −
(

mΛ

eΛ

)

. (3.49)

Furthermore, in these variables (3.45) reads

ImXΛeΛ − ImFΛmΛ = 0 . (3.50)

Let us return to the flow equations for the hypermultiplet scalars (3.28) or (3.29)

respectively, whose solution we already gave in (3.34). However, in order to compare the

solution with the Hitchin flow equation of the next section it is useful to rewrite them in a

form similar to (3.49). This is achieved in terms of rescaled variables (ZA, WA)η given by

(ZA, WA) = |c| (ZA, WA)η , |c|2 ≡ eKV −KH =
D

3
e4U , (3.51)

where the last equality used (3.35) and (3.47). The geometrical meaning of this rescaling

will become more transparent in the next section.

Recalling the definition (A.22), the solution (3.34) and the gradient flow equation

(3.45), one can easily check that

∂w





ImZA

ImWa

ImW0





η

= −|c|





0

0

ReXΛeΛ − ReFΛmΛ



 . (3.52)

4. The geometry of the type IIA background

The DW solution of type IIB discussed in the previous section is expected to have a

mirror symmetric solution in type IIA. For RR fluxes mirror symmetry merely amounts

to exchanging the flux of the RR three-form F3 defined in (2.5) with the fluxes of the

even forms F2 and F4 of type IIA [6, 10]. However, for the NS-form H3 the situation is

more involved in that mirror symmetry can relate H3-flux to the torsion of a geometrical

compactification [16, 17] or possibly to non-geometrical quantities [20]. For electric NS

fluxes3 eΛ the IIA mirror symmetric solution corresponds to compactifications on half-flat

manifolds Ŷhf [21, 22, 17]. More precisely, in ref. [4] it was shown that the DW solution

takes the form of a warped product

M(1,2) ×w X7 , (4.1)

where the seven dimensional manifold X7 consists a six dimensional half-flat manifold Ŷhf

which is fibered over R. Thus the metric takes the form

ds2
(7) = dy2 + ds2

(6)(y) , (4.2)

where ds2
(6) is the metric of Ŷhf and y is the coordinate of R.

3Let us recall that we suppress the index “2” for the NSNS fluxes, that is we mean (eΛ, mΛ) ≡ (e2
Λ, m2Λ).
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Half-flat manifolds are a special sub-class of manifolds with SU(3) structure. They

admit a globally defined spinor which is invariant under SU(3). The existence of this

spinor implies the existence of a two-form J and a complex three-form Ωη.
4 For half-flat

manifolds J and Ωη satisfy the additional conditions [21, 22]

dJ2 = 0 = dImΩη . (4.3)

When Ŷhf sits inside X7 the non-trivial fibration is expressed by the Hitchin flow

equations [21, 22]
1

2
∂yJ

2 = −dReΩη , ∂yImΩη = dJ . (4.4)

They precisely ensure that X7 has G2 holonomy which corresponds to the N = 1 super-

symmetry of the IIB DW solution.

In this section we suggest a generalization of the type IIA geometric compactification

which also captures the mirror of non-trivial type IIB magnetic fluxes mΛ. More precisely

we check that compactifications of the form (4.1) where X7 contains a fibered product of

a six-manifold with SU(3) × SU(3) structure times the real line are mirror dual to type

IIB DW solutions with electric and magnetic flux. This generalized mirror symmetry has

recently been suggested in ref. [25, 29 – 31] and here we confirm that it also holds for the

case of the DW solution constructed in the previous section.

In order to check this proposal let us briefly summarize the results of refs. [29, 31]. It

was shown that the most general possible geometrical compactification of type II string

theories involves manifolds with SU(3)×SU(3). Such manifolds are defined by the existence

of two locally inequivalent spinors. Each of them is left invariant by an SU(3) and thus

together they define what is called an SU(3)×SU(3) structure [27, 28]. Compactifications on

such manifolds lead to an N = 2 low energy effective action in four space-time dimensions.

The space of scalar fields is most conveniently expressed in terms of two pure spinors of

SO(6, 6) denoted by Φ±. Geometrically Φ+ is a sum of even forms while Φ− is a sum of

odd forms. If one projects out all possible massive gravitino multiplets both Φ+ and Φ−

enjoy an expansion of the form

Φ+ = XΛωΛ − FΛ ωΛ , Φ− = ZA
η αA − WηA βA . (4.5)

The (ωΛ, ωΛ) form a (non-degenerate) symplectic basis on the space of even forms while

(αA, βA) form a symplectic basis on the space of odd forms. They are normalized according

to:
∫

Y
ωΛ ∧ ωΣ = δΣ

Λ ;

∫

Y
αA ∧ βB = δB

A . (4.6)

In addition Φ± satisfy a compatibility condition which in terms of the expansion (4.5)

reads [29, 31]

(XΛF̄Λ − X̄ΛFΛ) = (ZAW̄A − Z̄AWA)η . (4.7)

4Ω is only defined up to complex rescaling. Therefore a choice of normalization is involved in the

following. By Ωη we denote the three-form constructed from a normalized spinor or equivalently a three-

form which obeys Ωη ∧ Ω̄η = 3i
4

J3.
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Φ± are only defined up to arbitrary rescaling and as shown in [29] the low energy

effective action or more precisely the Kähler potentials depend on the rescaled sections

(ZA, WA) which are related to (ZA, WA)η precisely by the rescaling (3.51). In terms

of (XΛ, FΛ) and (ZA, WA) the Kähler potentials are again given by (A.1) and (A.20),

respectively. Furthermore, it is possible to choose special coordinates where X0 = −i, Z0 =

1 holds and in these coordinates mirror symmetry is realized by imposing [30, 31]

dα0 = mΛωΛ − eΛωΛ , dαa = dβA = 0 , dωΛ = eΛβ0 , dωΛ = mΛβ0 . (4.8)

One shows that for type IIA compactifications on manifolds obeying (4.8) spectrum and

effective action coincide with that obtained by compactifying type IIB an Calabi-Yau three-

folds with electric and magnetic NS three-form flux turned on [31]. For mΛ = 0 one pre-

cisely obtains the half-flat manifolds discussed above. In this case one has Φ+ = eB+iJ and

Φ− = Ωη, where B is the NS two-form.

What is left to study are the SU(3) × SU(3) generalizations of (4.3) and (4.4) and to

show that they correspond to the DW solutions of the previous section. From a mathe-

matical point of view the generalized flow equations have been derived in ref. [28] and (in

our notation) they read

d ImΦ− = d ImΦ+ = 0 , (4.9)

∂yImΦ+ = −dReΦ− , (4.10)

∂yImΦ− = dReΦ+ . (4.11)

Let us now show that these flow equations together with (4.8) coincide with the DW

solution of the previous section. We start by computing dΦ± and insert (4.8) into (4.5).

This yields

dΦ+ = (XΛeΛ − FΛmΛ)β0 , (4.12)

dΦ− = |c|−1(mΛωΛ − eΛωΛ) , (4.13)

where |c| is defined in (3.51). From the reality of the right hand side of (4.13) we im-

mediately conclude d ImΦ− = 0. Furthermore d ImΦ+ = 0 coincides with the condition

(3.50).

The next step is to compute ∂yImΦ±. Using (4.5) we arrive at

∂yImΦ+ = (∂yImXΛ)ωΛ − (∂yImFΛ)ωΛ , (4.14)

∂yImΦ− = (∂yImZA
η )αA − (∂yImWη A)βA . (4.15)

Changing coordinates according to

dy = |c|−1dw , (4.16)

we see that ∂yImΦ+ = −dReΦ− precisely corresponds to (3.49) and ∂yImΦ− = dReΦ+

corresponds to (3.52). Thus we have achieved our goal and recovered the type IIB flow

equations from the generalized Hitchin flow equations (4.9)–(4.11) on the type IIA side.
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Our next chore is to compare the superpotentials. In (3.12) we learned that W is

related to the matrix SAB defined in (2.6). Precisely this quantity was computed in [29] in

terms of the pure spinors Φ± to be

W ∼ e
1
2
(KV +KH)+ϕ

∫

Y
dΦ+ ∧ Φ− = e

1
2
(KV +KH)+ϕ(XΛeΛ − FΛmΛ) , (4.17)

where we used (4.5) and (4.8). Again this type IIA quantity precisely coincides with (3.17)

of type IIB if we also use (A.2). Thus the Hitchin flow equations can also be viewed as

gradient flow equations of the form (3.27), (3.28) with a superpotential given by (4.17).

In summary we just showed that the DW solutions of type IIB can be expressed

as generalized Hitchin flow equations for the two pure spinors Φ± of a manifold with

SU(3) × SU(3) structure as given in (4.9)–(4.11).

Our final task is to discuss the properties of the seven-dimensional manifold X7. As

the metric on the DW is flat and the background M(1,2) ×w X7 solves the string equation

of motion, we expect X7 to be Ricci flat. For half-flat manifolds this was indeed shown in

refs. [21, 22, 4]. In order to discuss the generalization at hand let us introduce the seven

dimensional exterior derivative by

d̂ = d + dy ∂y , (4.18)

where d acts on Ŷ6 and ∂y is the derivative with respect to the coordinate of R. Furthermore,

following [27, 28] one can define the generalized forms ρ and ∗ρ on X7 which are given in

terms of Φ± by

ρ = −ReΦ+ ∧ dy − ImΦ− , ∗ρ = ReΦ− ∧ dy + ImΦ+ . (4.19)

∗ρ is the Hodge dual of ρ with respect to the generalized metric. As noted in [27, 28] the

equations (4.9)–(4.11) then correspond to

dρ = ∗d∗ ρ = 0 , (4.20)

and imply that X7 has an integrable G2 × G2 structure and is indeed Ricci-flat.

5. Conclusions and outlook

In this paper we studied three-dimensional N = 1 DW solutions of four-dimensional N = 2

supergravities which arise as the low energy limit of type IIB string theory compactified

on Calabi-Yau threefolds in the presence of RR and NS three-form fluxes. An essential

ingredient in our analysis was the newly constructed N = 2 supergravity [11]–[14] which

includes massive antisymmetric tensors in the spectrum. The use of this supergravity is

necessary whenever magnetic fluxes are turned on as they render antisymmetric tensors

in the type IIB spectrum massive. In this respect we generalized the previous analysis of

refs. [3, 4] and consistently included magnetic fluxes. We further showed that the N = 2

scalar fields vary according to a set of gradient flow equations and explicitly determined

their solution in terms of the fluxes.

– 14 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
8

The second aspect of the paper dealt with the type IIA mirror symmetric DW solutions.

Here we used the results of [29 – 31] and showed that the flow equations of type IIB have

a mirror dual which is purely geometrical and can be understood as a set of generalized

Hitchin flow equations for a particular class of manifolds with SU(3)×SU(3) structure [28].

As in refs. [21, 22, 28] these flow equations do have a seven-dimensional interpretation and

can be viewed as arising from fibering a six-dimensional manifold with SU(3) × SU(3)

over the real line and demanding an integrable G2 × G2 structure of the resulting seven-

dimensional manifold.
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A. The scalar σ–model of N = 2 supergravity

In this appendix we record some further details of the scalar fields in N = 2 supergravity.

They can be viewed as the coordinates of some target space geometry which is constrained

by N = 2 supersymmetry. In particular the complex scalars of the vector multiplets lead

to a special Kähler geometry while the scalars in the hypermultiplets span a quaternionic

manifold [34]. Let us discuss both geometries in turn.

A.1 Special Kähler geometry of the vector multiplets

The complex scalars ti, i = 1, . . . , nV belonging to the nV vector multiplets span a special

Kähler geometry. That is their σ-model metric is a Kähler metric with a Kähler potential

KV = − ln i
[

X̄ΛFΛ − F̄ΛXΛ
]

, Λ = 0, . . . , nV . (A.1)

XΛ(t) and FΛ(t) depend holomorphically on the scalars ti and are related to the covariantly

holomorphic section V introduced in (2.9) by

V = (LΛ,MΛ) = eKV /2(XΛ, FΛ) . (A.2)
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For Calabi-Yau compactifications FΛ = ∂ΛF (X) is the derivative of a prepotential F .

In the large volume or large complex structure limit F is given by

F (X) = − 1

3!
cijk

XiXjXk

X0
, i = 1, . . . , nV , (A.3)

where the cijk are constants. A particular set of coordinates, called special coordinates, is

given by

ti ≡ bi + ivi =
Xi

X0
. (A.4)

In these coordinates the Kähler potential (A.1) is given by

KV = − ln
[ 4

3
cijkv

ivjvk
]

. (A.5)

A.2 Geometry of tensor- and hypermultiplets

The hypermultiplet geometry is described in terms of real scalar fields qû, û = 1, · · · , 4nH ,

(here nH is the number of hypermultiplets) which span a quaternionic manifold. The

metric can be expressed in terms of a covariantly constant vielbein UAα ≡ UAα
û dqû. More

explicitly one has

hûv̂ = UAα
û UBβ

v̂ εABCαβ , A,B = 1, 2 , (A.6)

where εAB = −εBA and Cαβ = −Cβα are the SU(2) and Sp(2nH , R) invariant metrics

respectively. The quaternionic vielbein obeys

∇UAα ≡ dUAα + ω̂A
B ∧ UBα + ∆̂αβ ∧ UAβ = 0 , (A.7)

where ω̂AB
û , ∆̂αβ

û are the SU(2) and Sp(2nH , R) valued connections.

A set of scalars which parameterizes translational and commuting isometries can be

dualized into a set of nT antisymmetric rank two tensors [11]. In this case the remaining

scalars qu, u = 1, · · · , 4nH − nT will not parameterize a quaternionic manifold anymore.

Instead their σ-model metric guv is given by

guv = huv − hIuM IJhJv = PAα
u PBβ

v εABCαβ , guv = huv , (A.8)

where we decomposed the quaternionic metric as

hûv̂ =

(

huv huJ

hvI hIJ

)

, (A.9)

and defined M IJ as the inverse of hJK

M IJhJK = δI
K . (A.10)

The vielbein PAα
u of the metric guv defined in (A.8) can be expressed in terms of the

quaternionic vielbein as follows

PAα
u ≡ UAα

u − AI
uUAα

I , P u Aα ≡ Uu Aα , (A.11)
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where AJ
u = hIuM IJ . Similarly the connections decompose as

ω̂AB
u ≡ ωAB

u + AI
uωAB

I , ω̂AB
I ≡ ωAB

I ;

∆̂αβ
u ≡ ∆αβ

u + AI
u∆αβ

I , ∆̂αβ
I = ∆αβ

I . (A.12)

The new quantities satisfy a certain number of relations [11, 33] and here we record only

the ones needed in order to derive (3.23) and (3.24)

(PAα
u PBβ

v + PAα
v PBβ

u )Cαβ = guvε
AB , (A.13)

(PAα
u UBβ

I + UAα
I PBβ

u )Cαβ = 0 , (A.14)

(UAα
I UBβ

J + UAα
J UBβ

I )Cαβ = MIJεAB , (A.15)

U (A
Iα PB)α

u =
1

2
∇uωAB

I . (A.16)

The covariant derivative ∇u is defined with respect to the reduced connection ωAB
u , ∆αβ

u .

The convention for raising and lowering the symplectic indices is as follows

εABTB = TA , TBεBA = TA , (A.17)

CαβT β = Tα , TβC
βα = Tα . (A.18)

A.3 Quaternionic geometry in Calabi-Yau compactifications

So far we only discussed the geometry as it appears in general in N = 2 supergravity. In

Calabi-Yau compactifications of either type IIA or type IIB string theory only a special

class of quaternionic geometries, termed ‘dual quaternionic geometries’, arise at the tree

level [37]. This is basically a consequence of mirror symmetry and states that the quater-

nionic manifold of real dimension 4nH necessarily has a special Kähler submanifold of real

dimension 2nH which is spanned by the geometrical moduli. The remaining 2nH scalar

fields then arise from the RR sector.

Let us be slightly more explicit. A Calabi-Yau manifold has a geometrical moduli

space M which is product of a component Mk spanned by the deformations of the Kähler

form and a component Mcs spanned by the deformations of the complex structure

M = Mk ×Mcs . (A.19)

Each component is a special Kähler geometry with a Kähler potential of the form (A.1),

i.e. a Kähler potential which can be characterized by a holomorphic prepotential.

In compactifications of type IIA the deformations of the Kähler form reside in vector

multiplets while the deformations of the complex structure are members of the hyper-

multiplets. In type IIB the situation is exactly reversed and the Kähler moduli sit in

hypermultiplets while the complex structure moduli populate the vector multiplets. In

both cases the geometrical moduli in the hypermultiplets combine with the scalar field

from the RR sector to span the full quaternionic geometry.

Since we are discussing both type IIA and type IIB compactifications in the main text

we choose to denote the scalar fields in the vector multiplets by ti irrespective of their
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Calabi-Yau origin as Kähler or complex structure deformations. Similarly, we denote by

za the geometrical moduli which reside in the hypermultiplets and which span the special

Kähler submanifold inside the quaternionic manifold. Their Kähler potential we denote as

KH = − ln i
[

Z̄AWA − W̄AZA
]

, A = 0, . . . , nH , (A.20)

where WA(Z) is the second holomorphic prepotential. In the large volume or large complex

structure limit KH reduces to

KH = − ln
[ 4

3
dabcλ

aλbλc
]

, (A.21)

where

za = σa + iλa =
Za

Z0
(A.22)

are the special coordinates in this sector.

Finally let us also record the relation with the conventions used in ref. [35]. In this

paper the quantities K̂ and K̃ are used which are related to the quantities used in this

paper by

e−K̂ = 2e−KH , e−K̃ = e−2ϕ , (A.23)

where ϕ is the four-dimensional dilaton. Finally, the ten-dimensional dilaton can be ex-

pressed as

Imτ = 4e
K̂−

eK
2 . (A.24)

B. Explicit solution of the flow equations

In this appendix we derive the explicit solution of the vector multiplets flow equation.

The formal integration of equation (3.39) is trivial and gives:

(

Y Λ − Y
Λ

FΛ −FΛ

)

= −i

(

mΛ

eΛ

)

x +

(

KΛ

KΛ

)

. (B.1)

Imposing (2.10), (3.45) on (B.1) one obtains the condition:

KΛeΛ − KΛmΛ = 0 (B.2)

From the normalization Y 0 = − i
2 we infer K0 = 1. Explicit integration of (3.42)–(3.44)

yields

bi=mix + Ki (B.3)

cijkv
jvk=cijkm

jmk x2 + 2(cijkm
jKk + ei)x + cijkK

jKk + 2Ki (B.4)

Reinserting (B.3) and (B.4) back into (3.43), (3.44) and making use of (B.2) one obtains

the following set of constraints on the parameters:

m0 = 0 (B.5)

K0 = 1 (B.6)
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cijkm
imjmk = 0 (B.7)

cijkm
imjKk + eim

i = 0 (B.8)

cijkm
iKjKk + 2Kim

i = 0 (B.9)

1

3
cijkK

iKjKk + KiK
i + K0 = 0 (B.10)

Kiei = KiKi (B.11)

Contacting (B.4) with mi and using (B.7)-(B.9) we further obtain:

cijkm
ivjvk = 0 (B.12)

References

[1] For a review see, for example, O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and

Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183

[hep-th/9905111].

[2] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097].

[3] K. Behrndt, G. Lopes Cardoso and D. Lüst, Curved BPS domain wall solutions in
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